[1] R. Kannan, M. Ishteva, B. Drake, and H. Park. Bounded matrix low rank approximation. In G. R. Naik, editor, Non-negative Matrix Factorization Techniques, Signals and Communication Technology, pages 89-118. Springer Berlin Heidelberg, 2016. [ bib | DOI | http ]
[2] I. Markovsky. System identification in the behavioral setting: A structured low-rank approximation approach. In E. Vincent et al., editors, Latent Variable Analysis and Signal Separation, volume 9237 of Lecture Notes in Computer Science, pages 235-242. Springer, 2015. [ bib | pdf | Abstract ]
[3] M. Ishteva. Tensors and latent variable models. In E. Vincent, A. Yeredor, Z. Koldovský, and P. Tichavský, editors, Latent Variable Analysis and Signal Separation, volume 9237 of Lecture Notes in Computer Science, pages 49-55. Springer International Publishing, 2015. [ bib | DOI | http ]
[4] P. Dreesen, T. Goossens, M. Ishteva, L. De Lathauwer, and J. Schoukens. Block-decoupling multivariate polynomials using the tensor block-term decomposition. In E. Vincent, A. Yeredor, Z. Koldovský, and P. Tichavský, editors, Latent Variable Analysis and Signal Separation, volume 9237 of Lecture Notes in Computer Science, pages 14-21. Springer International Publishing, 2015. [ bib | DOI | http ]
[5] I. Markovsky. Rank constrained optimization problems in computer vision. In A. Argyriou J. Suykens, M. Signoretto, editor, Regularization, Optimization, Kernels, and Support Vector Machines, Pattern Recognition, chapter 13, pages 293-312. Chapman & Hall/CRC Machine Learning, 2014. [ bib | pdf ]
[6] I. Markovsky and K. Usevich. Nonlinearly structured low-rank approximation. In Yun Raymond Fu, editor, Low-Rank and Sparse Modeling for Visual Analysis, pages 1-22. Springer, 2014. [ bib | DOI | pdf | Abstract ]
[7] I. Markovsky. Algorithms and literate programs for weighted low-rank approximation with missing data. volume 3, chapter 12, pages 255-273. Springer, 2011. [ bib | DOI | pdf | software ]

This file was generated by bibtex2html 1.97.